
© 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating

new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

For more information, please see www.ieee.org/web/publications/rights/index.html.

www.computer.org/software

Tests and Requirements,
Requirements and Tests:

A Möbius Strip

Robert C. Martin, Object Mentor Inc.
Grigori Melnik, University of Calgary and Microsoft

Vol. 25, No. 1
January/February 2008

This material is presented to ensure timely dissemination of scholarly and technical work.
Copyright and all rights therein are retained by authors or by other copyright holders. All

persons copying this information are expected to adhere to the terms and constraints
invoked by each author's copyright. In most cases, these works may not be reposted

without the explicit permission of the copyright holder.

Tests and Requirements,
Requirements and Tests:
A Möbius Strip

Robert C. Martin, Object Mentor Inc.

Grigori Melnik, University of Calgary and Microsoft

Surprisingly, to some people, one of the most effective ways of testing requirements is with test cases
very much like those for testing the completed system. —Donald C. Gause and Gerald M. Weinberg

W
hen Donald Gause and Gerald Weinberg wrote this statement,1 they
were asserting that writing tests is an effective way to test requirements’
completeness and accuracy. They also suggest writing these tests when
gathering, analyzing, and verifying requirements—long before those re-

quirements are coded. They go on to say, “We can use the black box concept during re-
quirements defi nition because the design solution is, at this stage, a truly black box. What
could be more opaque than a box that does not yet exist?”1 Clearly, they value early test

cases as a requirements-analysis technique.
Testing expert Dorothy Graham agrees. She

recommends performing test-design activities “as
soon as there is something to design tests against—
usually during the requirements analysis.”2 Ac-
cording to Graham, designing tests highlights
what users really want the system to do. If soft-
ware professionals design tests early and with us-
ers’ involvement, they can discover problems be-
fore building them into the system.

The testing community has also promoted early
writing of acceptance tests,3 but this remains at
odds with much practice. Most development orga-
nizations don’t write acceptance tests. The fi rst tests
they write are often manual scripts, written after
the application starts executing. They base these
regression tests on the executing system’s behavior
as opposed to the original requirements. Instead of
manual tests, some organizations use record-and-

playback tools to automate their tests. These tools
record the tester’s strategic decisions by watching
the tester operate the current system and remem-
bering how the system responds. Later, the tool can
repeat the sequence and report any deviation. Al-
though record-and-playback tests can be valuable,4
they’re written far later than Gause, Weinberg, and
Graham suggest, and their connection to the origi-
nal requirements is indirect at best.

We argue for early writing of acceptance
tests as a requirements-engineering technique.
We be lieve that concrete requirements blend
with acceptance tests in much the same way as
the two sides of a strip of paper become one
side in a Möbius strip (see fi gure 1). In other
words, requirements and tests become indistin-
guishable, so you can specify system behavior
by writing tests and then verify that behavior
by executing the tests.

focus 2

54 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 74 0 - 74 5 9 / 0 8 / $ 2 5 . 0 0 © 2 0 0 8 I E E E

r e qu ir em en t s an d a g i l i t y

Writing acceptance
tests early
is a requirements-
engineering
technique that
can save time and
money and help
businesses better
respond to change.

Test precision
Record-and-playback might occur late, but is it

really appropriate to write tests as part of require-
ments defi nition? Yes, because writing tests is a
way of being relentlessly precise. In essence, a test
is a question that has a concrete answer, whereas
a requirement is generally more abstract. Consider
the following requirement: “The system shall ac-
knowledge the number of tickets purchased.” As
fi gure 2 shows, a test could more concretely state
this requirement.

This simple table is written in the FIT style
(Frame work for Integrated Testing, http://fi t.c2.
com). It shows three different ticket purchases, along
with the acknowledgment that the system should
output. The table provides a level of detail that’s
hard to put into the less formal language of “shall”
statements. We see not only the precise message that
acknowledges the purchase but also subtleties in
grammar and the length of the play names.

David Parnas recognized the value of tabular
specifi cation as early as 1977 when he was working
on the A-7 project for the US Naval Research Lab.
In 1996, he wrote,

Tabular notations are of great help in situa-
tions like this. One fi rst determines the struc-
ture of the table, making sure that the head-
ers cover all possible cases, then turns one’s
attention to completing the individual entries
in the table. The task may extend over weeks
or months; the use of the tabular format helps
to make sure that no cases get forgotten.5

Indeed, as we examine fi gure 2, we can think of
many additional headers, such as “Where will the
play be held?” or “What time is the showing?” The
table is far more suggestive than the original
“shall” statement.

The equivalence hypothesis
If you look closely at fi gure 2, you’ll see that

it’s diffi cult to tell whether it’s a requirement or
a test. Clearly, it specifi es the system behavior
and could be viewed as a kind of Parnas-table
requirement. On the other hand, you could imag-
ine a tester using this table to verify system op-
eration. Indeed, you might even imagine a simple
software engine that reads the table, operates the
system, and turns a light red or green, depend-
ing on whether the system’s behavior matches the
table’s specifi cation.

This fuzziness between requirements and tests
suggests an idea that we call the equivalence hy-
pothesis: “As formality increases, tests and require-

ments become indistinguishable. At the limit, tests
and requirements are equivalent.” In a practical
sense, this hypothesis describes how many software
development teams behave—typically, the passing
of acceptance tests, as opposed to an examination
of the requirements, is the fi nal criterion for ship-
ping a system.

Any reasonable hypothesis should be falsifi able;
otherwise, it’s little more than a feel-good state-
ment. To falsify our equivalence hypothesis, you
would have to construct a requirement and a test
that diverge as the formality increases. In other
words, as the system description becomes more pre-
cise, the requirement becomes less testable. This, it
seems to us, is virtually reductio ad absurdum.

A hypothesis should also be predictive. Our
equivalence hypothesis predicts that an informal
system description won’t be testable. Or, rather,
you can’t write unambiguous tests against an im-
precise requirement. Consider the following re-
quirement, written at a higher abstraction level:
“The system shall acknowledge the number of tick-
ets purchased.” How should the system present this
acknowledgement? As a green light? A verbal re-
sponse? By mail? Also, when should it give it—im-
mediately, or six months from now?

Executable test-based
specifi cations

If our equivalence hypothesis is true, we should

 January/February 2008 I E E E S O F T W A R E 55

EM
REQUIR

TEST

Figure 1. Writing requirements and testing are interrelated, much like
the two sides of a Möbius strip.

Purchase tickets and check acknowledgment
Play Quantity Acknowledgment?
Phantom 2 You have purchased 2 tickets to Phantom of the Opera.
Wizard 1 You have purchased 1 ticket to The Wizard of Oz.
Cats 1 The play ‘Cats’ is not currently playing in a theater.

Figure 2. A FIT (Framework for Integrated Testing) table
for purchasing tickets.

be able to specify system behavior using tests and
then verify that the system behaves as specifi ed by
executing those tests. The open source tool FitNesse
(http://fi tnesse.org) provides a collaboration plat-
form to fl esh out requirements written as tests in the
FIT style.6 FitNesse also contains a test-running en-
gine that can apply those tests to the system being
specifi ed. Here, we use this tool to specify a simple
ticket-sales system.

As you can see from the specifi cation episode
in fi gure 3, we use both declarative and procedural
tables. The declarative tables have column headers
and rows that show a query result. The procedural

tables specify user interactions with the system, in-
cluding both happy and sad paths.

According to Ian Alexander and Neil Maiden,
these “sequences of events in time are at the heart
of our ability to construct meaning.”7 Furthermore,
other researchers have recognized that “tables, un-
like natural language, encode temporal sequences
unambiguously.”8 Taken as a whole, we see an en-
tire workfl ow, including user actions and system
responses. The result looks close enough to an or-
dinary story that people can understand it without
inordinate effort. What’s more, specifi ers can write
plain text stories and then maneuver those stories
into tables.

This ease of reading and authoring is critical
for requirements engineering, because stakehold-
ers who aren’t technologically savvy often perform
the specifi cation. Furthermore, requirements are
more credible and motivating if stakeholders write
them—or at least help write them.

The notion that stakeholders can write tests
doesn’t imply that we should suddenly discard our
years of testing experience in favor of customer-
written tests. On the contrary, although writing
tests in a language that customers can read—and
even write—is valuable, testing professionals still
must apply techniques such as boundary value anal-
ysis, path analysis, and state transition analysis.

Benefi ts of narratives
and suffi cient formality

Notice how close the test in fi gure 3 is to a normal
narrative or use case. If desired, a simple postpro-
cessor or browser option could make the test look
even more like a colloquial scenario. This closeness
to human language means that stakeholders and de-
velopers can easily read these requirements and in-
fer the same meaning from them. (A series of quasi-
experiments and case studies support this.9)

And yet, for all their readability, these tests have
suffi cient formality to allow an automatic engine
to run them and validate that the system behaves
as specifi ed. In short, the human-readable require-
ments are also executable acceptance tests. For ex-
ample, if our ticket-sales application miscalculates
the price of a child’s ticket, FitNesse will display the
test results in fi gure 4.

The red and green highlighting makes evaluat-
ing these test results easy. As Cem Kaner points out,
ease of evaluation is “valuable for all tests, but is es-
pecially important for scenarios because they are
complex.”10 After all, we don’t want bugs to be ex-
posed by a test but not recognized by the engineer-
ing team.

Another important benefi t of concrete examples

56 I E E E S O F T W A R E w w w . c o m p u t e r . o r g / s o f t w a r e

User: bob searches for play: Phantom where: Toronto when: July 2007

Search Results
play status
The Phantom of the Opera available
Phantom Band available
No Face Phantom sold out

reject user: bob chooses play: Phantomas

system error: No such play. Try again.

user: bob chooses play: The Phantom of the Opera

Play Availability
date time venue
July 15, 2007 2:00 pm Pantages theater
July 15, 2007 8:00 pm Pantages theater
July 16, 2007 8:00 pm Pantages theater

user: bob chooses showing at: 8:00 pm on: July 15, 2007

Seating Section Availability
play date time seating
The Phantom of the Opera July 15, 2007 8:00 pm main floor
The Phantom of the Opera July 15, 2007 8:00 pm first balcony
The Phantom of the Opera July 15, 2007 8:00 pm second balcony

user: bob chooses seating: first balcony

Discount Availability
type price
full price $95.00
student $80.00
senior $80.00
child $32.00

user: bob chooses discount: full price quantity: 2
...

Figure 3. A specifi cation
scenario for a ticket-
sales system.

and FIT-style specifi cations is that they help develop-
ers, managers, testers, and stakeholders avoid mis-
understandings. They help the parties agree on busi-
ness needs and terminology through the creation
and enhancement of a ubiquitous language—that is,
a well-documented (through tests) shared language
that can express the necessary domain information
as a common medium of communication.11

Automated spec ≠ autogenerated spec
Writing requirements as tests in the FIT style

shouldn’t be confused with some earlier approaches
that autogenerated test scripts from requirement
specifi cations, fi nite-state machines, activity dia-
grams, and so forth. These approaches weren’t very
successful in practice. According to Klaus Weiden-
haupt and his colleagues, “the main problem was
that the scenarios developed during requirements
engineering and system design were out of date at
the time the system was going to be tested.”12

Also, don’t confuse FIT-style requirements tests
with “operational specifi cations” that support for-
mal reasoning (such as Gist, Statemate, or PAISley).
These specifi cations are powerful, but they’re quite
cryptic for an ordinary business person.

When using the FIT style, the specifi cation itself
is a test suite. The requirements and tests evolve with
the system. Indeed, in an environment where con-
tinuous integration and rigorous testing are prac-
ticed,13 a FIT-style requirements document would
never be out of sync with the application itself. This
is because any disagreement between the require-
ments and the code would cause the build to fail!

A more complex scenario
Software is hard. Most tools break when you

want to do something a bit more complicated than
their designers expected—that is, when you most
need them. Can we use the FIT specifi cation style in
situations that are more complex than simple inter-
action scenarios?

Consider the specifi cation of a typical concur-
rency issue in fi gure 5. When we view this specifi ca-
tion as a message-sequence chart (see fi gure 6), we
see that this is a classic race condition. Bob took his
time selecting his seat, while Greg jumped in and
got all the remaining main fl oor tickets.

Notice how these tests treat time as something
that can be controlled. Indeed, time is just another
system input that impacts the system state. If, as fi g-
ure 5 shows, our tests can specify the fl ow of time,
then we can describe concurrency issues and specify
how the system with multiple synchronous stimuli
and responses should behave.

Specifying and testing performance is conceptu-
ally no more diffi cult than the concurrency test we
presented. The amount of time an operation takes is
merely another system output, which we can specify
and test just like any other output. It wouldn’t be
diffi cult to make the test shown in fi gure 7 execute.

 January/February 2008 I E E E S O F T W A R E 57

Discount Availability
type price
full price $95.00
student $80.00
senior $80.00
 $32.00 expected
child

$31.99 actual

Figure 4. The test results FitNesse
displays in correct cases (full, senior, and
student prices) and in one erroneous case
(miscalculation of a child’s ticket price).

time is now 2006/10/03 10:24:00 am
user: bob chooses showing at: 8:00 pm on: July 15, 2007

Seating Section Availability
play date time seating quantity available
The Phantom of the Opera July 15, 2007 8:00 pm main floor 10
The Phantom of the Opera July 15, 2007 8:00 pm first balcony 5
The Phantom of the Opera July 15, 2007 8:00 pm second balcony 2

time is now 2006/10/03 10:24:10 am
user: greg chooses showing at: 8:00 pm on: July 15, 2007

Seating Section Availability
play date time seating quantity available
The Phantom of the Opera July 15, 2007 8:00 pm main floor 10
The Phantom of the Opera July 15, 2007 8:00 pm first balcony 5
The Phantom of the Opera July 15, 2007 8:00 pm second balcony 2

time is now 2006/10/03 10:24:15 am
ensure user: greg buys: 10 seating: main floor with credit card: 331234176273

Purchase Acknowledgment
play seating quantity total charge? acknowledgment?
The Phantom of Main floor 10 $950.00 You have purchased 10 tickets
the Opera to The Phantom of the Opera.

time is now 2006/10/03 10:24:20 am
reject user: bob buys: 1 seating: main floor with credit card: 250192030292

Purchase Acknowledgment
play seating quantity total charge? acknowledgment?
The Phantom of main floor 0 *NO CHARGE* Sorry, all main floor tickets
the Opera are sold out.

Figure 5. The
specifi cation of a typical
concurrency issue.

Clearly, getting these specifi cations to execute as
tests requires some behind-the-scenes magic. What’s
remarkable is the comparatively tiny amount of ef-
fort required to cast that magic spell. The glue code
behind the scenes is small, tightly encapsulated,
highly reusable, and very easy to write.

Potential business impact
If our equivalence hypothesis is true, and soft-

ware professionals write their requirements in the
form of acceptance tests, this could cut a lot of
time and money from the project’s test planning
phase. The concrete nature of the test-based speci-
fi cations could reduce the number of pointless fea-
tures and code, making the project more agile.
Furthermore, the development team would be able
to handle requirements changes more adequately
and effi ciently.

I n this article, we purposely avoided describ-
ing the detailed syntax of FIT to demonstrate
that knowledge of that syntax isn’t required to

read and understand the tests as requirements. This
could lead you to believe that there is no syntax and

that the tests are simply ad hoc conversions of nar-
ratives to tables. In fact, the syntax is suffi ciently
formal for a computer program to interpret and ex-
ecute unambiguously.

Requirements written in the FIT style are also
tests. They form a Möbius strip that appears to
have two sides but, on careful inspection, has only
one. The result is that the requirements become
tangible. There can be no ambiguity about a re-
quirement if that requirement can turn a light red
or green.

References
 1. D. Gause and G. Weinberg, Exploring Requirements,

Dorset House, 1989, p. 249.
 2. D. Graham, “Requirements and Testing: Seven

Missing-Link Myths,” IEEE Software, vol. 19, no. 5,
2002, pp. 15–17.

 3. B. Hetzel, The Complete Guide to Software Testing,
QED Information Sciences, 1983.

 4. G. Meszaros, “Agile Regression Testing Using Record
& Playback,” Companion of the 18th Ann. ACM SIG-
PLAN Conf. Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA 03), ACM Press,
2003, pp. 353–360.

 5. R. Janicki, D. Parnas, and J. Zucker, Tabular Represen-
tations in Relational Documents, Communications Re-
search Laboratory, McMaster University, 1995, p. 5.

 6. R. Mugridge and W. Cunningham, Fit for Developing
Software, Prentice Hall, 2005.

 7. I. Alexander and N. Maiden, Scenarios, Stories, Use

58 I E E E S O F T W A R E w w w . c o m p u t e r . o r g / s o f t w a r e

Bob Reservation system Greg

Show seats for Phantom, 8 pm, 7/15

Main floor: 10
First balcony: 5
Second balcony: 2

Show seats for Phantom, 8 pm, 7/15

Main floor: 10
First balcony: 5
Second balcony: 2

10:24:00

10:24:10

Buy 10 main floor10:24:15

Acknowledgment

Buy 1 main floor

Sold out

10:24:20

Figure 6. The specifi cation from fi gure 5, shown as a message-sequence chart.

ensure transaction: choose showing executes: 1,000 times in less than: 5 seconds

Figure 7. A sample
test that would be
easy to execute.

Cases through the Systems Development Life-Cycle,
John Wiley & Sons, 2004, p. 5.

 8. C. Potts, K. Takahashi, and A. Antón, “Inquiry-Based
Requirements Analysis,” IEEE Software, vol. 11, no. 2,
1994, pp. 21–32.

 9. G. Melnik, F. Maurer, and M. Chiasson, “Executable
Acceptance Tests for Communicating Business Require-
ments: Customer Perspective,” Proc. Agile 2006 Conf.,
IEEE CS Press, 2006, pp. 35–46.

 10. C. Kaner, “On Scenario Testing,” Software Testing and
Quality Eng. Magazine, Sept./Oct. 2003, pp. 16–22.

 11. E. Evans, Domain-Driven Design: Tackling Complexity
in the Heart of Software, Addison-Wesley, 2004, p. 376.

 12. K. Weidenhaupt et al., “Scenarios in System Devel-
op ment: Current Practice,” IEEE Software, vol. 15,
no. 2, 1998, pp. 34–45.

 13. M. Fowler, “Continuous Integration,” www.
martinfowler.com/articles/continuousIntegration.
html, May 2006.

For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/csdl.

About the Authors
Robert C. Martin (Uncle Bob) is founder and president of Object Mentor. His re search
interests are agile programming, extreme programming, UML, object-oriented program-
ming, and C++ programming. He has authored many books, including Designing Object
Oriented C++ Applications Using the Booch Method (Prentice Hall, 1995), Agile Software
Development: Principles, Patterns, and Practices (Prentice Hall, 2002), and UML for Java
Programmers (Prentice Hall, 2003). He served three years as the editor in chief of the C++
Report, and he served as a founder and fi rst chairman of the Agile Alliance. Contact him at
unclebob@objectmentor.com.

Grigori Melnik is a senior product planner in the patterns and practices group at Mi -
crosoft. Prior to that (and when this article was written), he was a researcher and faculty
member at the University of Calgary. His research areas include agile methods, empirical
software engineering, executable acceptance-test-driven development, and domain-driven
design. He served as a guest editor of the IEEE Software special issue on Test-Driven Develop-
ment and is program chair of the Agile 2008 World Conference. Contact him at grigori.
melnik@microsoft.com.

 January/February 2008 I E E E S O F T W A R E 59

A D V E R T I S E R I N D E X J A N U A R Y / F E B R U A R Y 2 0 0 8

Advertiser/Product Page Number

Classifi ed Advertising 49

East Carolina University 9

ESRI 12

Gannon University 7

John Wiley & Sons, Inc. Cover 2

SD West 2008 Cover 3

Seapine Software, Inc. Cover 4

*Boldface denotes advertisements in this issue.

Advertising Personnel

Marion Delaney

IEEE Media,

Advertising Director

Phone: +1 415 863 4717

Email: md.ieeemedia@ieee.org

Marian Anderson

Advertising Coordinator

Phone: +1 714 821 8380

Fax: +1 714 821 4010

Email: manderson@
computer.org

Sandy Brown

IEEE Computer Society,

Business Development

Manager

Phone: +1 714 821 8380

Fax: +1 714 821 4010

Email: sb.ieeemedia@ieee.org

Advertising Sales Representatives

Mid Atlantic (product/recruitment)
Dawn Becker
Phone: +1 732 772 0160
Fax: +1 732 772 0164
Email: db.ieeemedia@ieee.org

New England (product)
Jody Estabrook
Phone: +1 978 244 0192
Fax: +1 978 244 0103
Email: je.ieeemedia@ieee.org

New England (recruitment)
John Restchack
Phone: +1 212 419 7578
Fax: +1 212 419 7589
Email: j.restchack@ieee.org

Connecticut (product)
Stan Greenfi eld
Phone: +1 203 938 2418
Fax: +1 203 938 3211
Email: greenco@optonline.net

Southwest (product)
Steve Loerch
Phone: +1 847 498 4520
Fax: +1 847 498 5911
Email: steve@didierandbroderick.
com

Northwest (product)
Lori Kehoe
Phone: +1 650 458 3051
Fax: +1 650 458 3052
Email: l.kehoe@ieee.org

Southern CA (product)
Marshall Rubin
Phone: +1 818 888 2407
Fax: +1 818 888 4907
Email: mr.ieeemedia@ieee.org

Northwest/Southern CA
(recruitment)
Tim Matteson
Phone: +1 310 836 4064
Fax: +1 310 836 4067
Email: tm.ieeemedia@ieee.org

Midwest (product)
Dave Jones
Phone: +1 708 442 5633
Fax: +1 708 442 7620
Email: dj.ieeemedia@ieee.org
Will Hamilton
Phone: +1 269 381 2156
Fax: +1 269 381 2556
Email: wh.ieeemedia@ieee.org
Joe DiNardo
Phone: +1 440 248 2456
Fax: +1 440 248 2594
Email: jd.ieeemedia@ieee.org

Southeast (recruitment)
Thomas M. Flynn
Phone: +1 770 645 2944
Fax: +1 770 993 4423
Email: fl ynntom@mindspring.com

Midwest/Southwest (recruitment)
Darcy Giovingo
Phone: +1 847 498-4520
Fax: +1 847 498-5911
Email: dg.ieeemedia@ieee.org

Southeast (product)
Bill Holland
Phone: +1 770 435 6549
Fax: +1 770 435 0243
Email: hollandwfh@yahoo.com

Japan (recruitment)
Tim Matteson
Phone: +1 310 836 4064
Fax: +1 310 836 4067
Email: tm.ieeemedia@ieee.org

Europe (product)
Hilary Turnbull
Phone: +44 1875 825700
Fax: +44 1875 825701
Email: impress@impressmedia.com

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0049004500450045002000580070006c006f0072006500200073007000650063007300200066006f0072002000440069007300740069006c006c0065007200200036002e0020004d0056>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

