
Suitability of FIT User Acceptance Tests for
Specifying Functional Requirements: Developer

Perspective

Grigori Melnik, Kris Read, Frank Maurer

Department of Computer Science, University of Calgary
Calgary, Canada

{melnik,readk,maurer}@cpsc.ucalgary.ca

Abstract. The paper outlines an experiment conducted in two different aca-
demic environments, in which FIT tests were used as a functional requirements
specification. Common challenges for functional requirements specifications
are identified, and a comparison is made between how well prose and FIT user
acceptance tests are suited to overcoming these challenges from the developer’s
perspective. Experimental data and participant feedback are examined to evalu-
ate whether developers can use requirements in the form of FIT tests to create a
design and implementation.

1 Introduction

It is common knowledge that two thirds of all software projects today fail (either by
being terminated, going overtime, going over-budget, or because they deliver only
partial functionality). Ambiguous or incomplete software requirements along with
poor quality control are two of the biggest contributors to these failures [7].

Despite the fact that quality control is a major cause of project failure, it is still of-
ten overlooked by project teams. Eighty-three percent of organizations' software de-
velopers don't like to test code [2]. One of the reasons is simply a lack of time to per-
form diligent and proper testing, which is frequently the result of inadequate planning
and time overruns in other activities. When testing is performed, often it is done at the
level of unit tests by the development and/or testing team. However, the goals and
mentality of testers may not entirely correspond with those of the customer. Accep-
tance tests are needed to ensure customer satisfaction with the final product. Accep-
tance tests also serve as regression tests, to ensure that previously working functional-
ity continues to behave as expected. These tests are often created based on a
requirements specification, and serve to verify that contractual obligations are met.
This creates a dependency between the requirements specification and acceptance test
suite, a dependency that may involve a great deal of overhead. Changes to one side
necessitate changes to the other, and effort is needed to ensure that the written re-
quirements correspond precisely to the expected test results (and vice versa). More-
over, this dependency means that problems in the requirements specification will di-
rectly impact quality control.

It is estimated that 85 percent of the defects in developed software originate in the
requirements [9, 1]. “Irrespective of the format chosen for representing requirements,
the success of a product strongly depends upon the degree to which the desired sys-
tem is properly described” [8]. Most software requirements are not specified using
formal languages, but instead are written as some form of business requirement
document. Normally such documents are written using natural languages and pictures.
There are several “sins” to avoid when specifying requirements, some of which are
listed by Meyer1 [6]. The first such sin is noise, which manifests as information not
relevant to the problem, or a repetition of existing information phrased in different
ways. Noise may also be the reversal or shading of previously specified statements.
Such inconsistencies between requirements make up 13 percent of requirements prob-
lems [4]. A second hazard is silence, in which important aspects of the problem are
simply not mentioned. Omitted requirements account for 29 percent of all require-
ments errors [4]. Over-specification can happen when aspects of the solution are men-
tioned as part of the problem description. Requirements describe what is to be done
but not how they are implemented [3]. Wishful thinking is when prose describes a
problem to which a realistic solution would be difficult or impossible to find. Ambigu-
ity is common when natural languages allow for more than one meaning for a given
word or phrase. Often this is problematic when jargon includes terms otherwise famil-
iar to the other party [6]. Prose is also prone to reader subjectivity since each person
has a unique perspective (based on their cultural background, language, personal ex-
perience, etc). Forward references mention aspects of a problem not yet mentioned,
and cause confusion in larger documents. Oversized documents are difficult to under-
stand, use and maintain. Customer uncertainty appears when an inability to express
specific needs results in an inclusion of vague descriptions. This, in turn, leads to de-
velopers making assumptions about “fuzzy” requirements: it has been estimated that
incorrect assumptions account for 49 percent of requirements problems [4]. Making
requirements understandable to the customer and verifiable by the developer might
lead to the creation of multiple representations of the same requirements. Preserving
more than one document can then lead to maintenance, translation and synchroniza-
tion problems. Requirements are sometimes lost, especially non-functional require-
ments, when the use of tools for requirements capture only supports a strictly defined
format or template. Lastly, requirements documents are often poor when written with
little to no user involvement, instead being compiled by requirements solicitors, busi-
ness analysts, domain experts or even developers [7].

This paper examines the suitability of FIT as a format for communicating func-
tional requirements to the developer, and explores whether this format helps mitigate
the “sins” listed above. In this context, we define “suitability” as the degree to which
the functional requirements are found to be unambiguous, verifiable, consistent, and
usable by developers for designing and implementing the system.

There are possibly other desirable properties of requirements. For example, from
the customer’s perspective, the ease of specifying and understanding the requirements

1 Meyer’s classification is well known; we have added some additional difficulties to the tradi-

tional “seven sins”. Meyer’s classification has been frequently referenced (see pp.232-233 in
[8] for example)

by all stakeholders is important. However our paper focuses only on those properties
listed above.

2 Acceptance Testing with FIT

By definition, acceptance tests assess whether a feature is working from the cus-
tomer’s perspective. Acceptance tests are different from unit tests in that the later are
modeled and written by the developer, while the former is at least modeled and possi-
bly even written by the customer. Acceptance tests can be specified in many ways,
from prose-based user stories to formal languages. Because the execution of accep-
tance tests is time consuming and costly, it is highly desirable to automate this proc-
ess. Automating acceptance tests gives an objective answer when functional require-
ments are fulfilled. At the same time, making the requirements too formal alienates
the user, as in the case of definition using formal languages.

FIT was named from the thesaurus entry for “acceptable”. The goal of FIT is an
acceptance test that an ordinary person can read and write2. To this end, FIT tests
come in two parts: tests are defined using ordinary tables (usually, written by cus-
tomer representatives, see Fig. 1 and Fig. 2, left side), and later fit fixtures are written
to execute code using the data from table cells (implemented by the developers, see
Fig. 1 and Fig. 2, right side). By abstracting the definition of the test from the logic
that runs it, FIT opens up authorship of new tests to anyone who has knowledge of the
business domain.

public class ArithmeticFixture
 extends ColumnFixture {
 public int x;
 public int y;

 public int plus (){ return x + y; }

 public int minus(){ return x - y; }

 public int times(){ return x * y; }

 public int divide(){return x / y; }
}

Fig. 1. Sample FIT table and ColumnFixture in Java. Excerpt from fit.c2.com

FIT tables can be created using common business tools, and can be included in any
type of document (HTML, MS Word, MS Excel, etc). This idea is taken one step fur-
ther by FitNesse3, a Web-based collaborative testing and documentation tool designed

2 We leave it to a future experiment to show whether or not FIT tests can be easily read or

written by customers. The present experiment focuses on whether developers can use func-
tional requirements for their purposes when specified as FIT acceptance tests.

3 http://www.fitnesse.org and http://fit.c2.com

around FIT. FitNesse provides a very simple way for teams to collaboratively create
documents, specify tests, and even run those tests through a Wiki Web site. The Fit-
Nesse wiki4 allows anyone to contribute content to the website without knowledge of
HTML or programming technologies.

public class Browser
 extends ActionFixture {
 ...
 public void select(int i) {
 MusicLibrary.
 select(MusicLibrary.library[i-1]);
 }

 public String title() {
 return MusciLibrary.looking.title;
 }

 public String artist() {
 return MusciLibrary.looking.artist;
 }
 ...

}

Fig. 2. Simple FIT table and ActionFixture in Java. Excerpt from fit.c2.com

Although acceptance tests are often written based on user requirements, we see that
with FIT it is not necessary to create a written requirements document before creating
an acceptance test. FIT tests are a tabular representation of customer expectations that
can be understood by human beings. All that is needed to write a FIT table is a cus-
tomer expectation and the ability to precisely and unambiguously write it down. In
this way they are very similar to written functional requirements5. If the expectations
themselves adequately explain the requirements for a feature, can be defined by the
customer, and can be read by the developer, there may be some redundancy between
the expression of those expectations and the written system requirements. Conse-
quently, it may be possible to eliminate or reduce the size of prose requirements defi-
nitions. An added advantage to increased reliance on acceptance tests may be an in-
crease in test coverage, since acceptance testing would both be mandatory and defined
early in the project life cycle. To this end an experiment has been designed to evaluate
the understandability of FIT acceptance tests for functional requirements specifica-
tion.

4 http://wiki.org/wiki.cgi?WhatIsWiki
5 http://c2.com/doc/xpu02/workshop.html

3 Instrument

The goal of our experiment was to determine the suitability of using FIT tests as the
functional part of a requirements specification. A project was conceived to develop an
online document review system (DRS). This system allows users to submit, edit, re-
view and manage professional documents (articles, reports, code, graphics artifacts
etc.) called submission objects (so). These features are selectively available to three
types of users: Authors, Reviewers and Administrators. More specifically, administra-
tors can create repositories with properties such as: title of the repository, location of
the repository, allowed file formats, time intervals, submission categories, review cri-
teria and designated reviewers for each item. Administrators can also create new re-
positories based on existing ones. Authors have the ability to submit and update mul-
tiple documents with data including title, authors, affiliations, category, keywords,
abstract, contact information and bios, file format, and access permissions. Reviewers
can list submissions assigned to them, and refine these results based on document
properties. Individual documents can be reviewed and ranked, with recommendations
(accept, accept with changes, reject, etc) and comments. Forms can be submitted in-
complete (as drafts) and finished at a later time.

For the present, subjects were required to work on only a partial implementation
concentrating on the submission and review tasks (Fig. 3). The only information pro-
vided in terms of project requirements was:

1. An outline of the system no more detailed than that given in this section.
2. A subset of functional requirements to be implemented (Fig. 3).
3. A suite of FIT tests (Fig. 4)

Specification
1. Design a data model (as a DTD or an XML Schema, or, likely, a set of

DTDs/XML Schemas) for the artifacts to be used by the
DocumentReviewSystem. Concentrate on "Document submission/update"
and "Document review" tasks for now.

2. Build XSLT sheet(s) that when applied to an instance of so's repository will
produce a subset of so's. As a minimum, queries and three query modes
specified in DrsAssignmentOneAcceptanceTests must be supported by
your model and XSLT sheets.

3. Create additional FIT tests to completely cover functionality of the queries.

Setup files
 drs_master.xml - a sample repository against which the FIT tests were

written
 DrsAssignmentOneAcceptanceTests.zip - FIT tests, unzip them into

FITNESSE_HOME\FitNesseRoot\ directory.

Fig. 3. Assignment specification snapshot6

6 http://mase.cpsc.ucalgary.ca/EB/Wiki.jsp?page=SENG513w04AssignmentOne

DRS Assignment One Acceptance Test Suite
Startswith Author Search

DrsAssignmentOneAcceptanceTests.FindByAuthorUnsorted
DrsAssignmentOneAcceptanceTests.FindByAuthorSortByTitle
DrsAssignmentOneAcceptanceTests.FindByAuthorSortByTitleDescending
DrsAssignmentOneAcceptanceTests.FindByAuthorSortByType
DrsAssignmentOneAcceptanceTests.FindByAuthorSortByDate
DrsAssignmentOneAcceptanceTests.FindByAuthorSortByDateDescending

Contains Author Search

DrsAssignmentOneAcceptanceTests.FindByAuthorContainsUnsorted
DrsAssignmentOneAcceptanceTests.FindByAuthorContainsSortByTitle
DrsAssignmentOneAcceptanceTests.FindByAuthorContainsSortByTitleDescending
DrsAssignmentOneAcceptanceTests.FindByAuthorContainsSortByType
DrsAssignmentOneAcceptanceTests.FindByAuthorContainsSortByDate

Fig. 4. Partial FIT Test Suite. The suite contains test cases and can be executed. For example,
the test FindByAuthorUnsorted results in an unsorted list of items matching an author name

Requirements in the FIT Test Suite of our experiment can be described generally
as sorting and filtering tasks for a sample XML repository. Our provided suite ini-
tially consisted of 39 test cases and 657 assertions. In addition to developing the code
necessary to pass these acceptance tests, participants were required to extend the ex-
isting suite to cover any additional sorting or filtering features associated with their
model. An example FIT Test finding a document by exact match of author name, with
results sorted by title in descending order is shown in Fig. 5.

Participants were given two weeks (unsupervised) to implement these features us-
ing XML, XSLT, Java and the Java API for XML Processing (JAXP). A common
online experience base7 was set up and all students could utilize and contribute to this
knowledge repository. An iteration planning tool and source code management sys-
tem were available to all teams if desired.

We hypothesized that:
A) FIT acceptance tests describe a customer requirement such that a developer can

implement the feature(s) for that requirement.
B) Developers with no previous FIT experience will quickly be able to learn how

to use FIT given the time provided.
C) 100% of developers will create code that passes 100% of customer provided

tests.
D) More than 50% of the requirements for which no tests were given will be im-

plemented and tested.
E) 100% of implemented requirements will have corresponding FIT tests.

7 http://mase.cpsc.ucalgary.ca/EB/

Fig. 5. A sample FIT test (after execution)

4 Sampling

Students of computer science programs from the University of Calgary and the
Southern Alberta Institute of Technology (SAIT) participated in the experiment. All
individuals were knowledgeable about programming and testing, however, no indi-
viduals had any advance knowledge of FIT or FitNesse (based on a verbal poll).

Twenty five (25) senior undergraduate University of Calgary students were en-
rolled in the course Web-Based Systems8, which introduces the concepts and tech-
niques of building Web-based enterprise solutions and includes comprehensive hands-
on software development assignments. Seventeen (17) students from the Bachelor of

8 http://mase.cpsc.ucalgary.ca/seng513/W2004/

Applied Information Systems program were enrolled in a similar course, Internet
Software Techniques9, at SAIT. The material from both courses was presented consis-
tently by the same instructor in approximately the same time frame. This experiment
spans only the first of six assignments involving the construction of a document re-
view system.

Students were encouraged to work on programming assignments following the
principles and the practices of extreme programming, including test-first design, col-
lective code ownership, short iterations, continuous integration, and pair program-
ming.

The University of Calgary teams consisted of 4 to 5 members, and additional help
was available twice a week from two teaching assistants. SAIT teams had 3 mem-
bers10 each; however they did not have access to additional help outside of classroom
lectures. In total, there were 12 teams and a total of 42 students.

5 Observations

Our first hypothesis was that FIT acceptance tests describe a customer requirement
such that a developer can implement the feature(s) for that requirement. Our experi-
ment provided strong evidence that customer requirements provided using good ac-
ceptance tests can in fact be fulfilled successfully. On average (mean) 82% of cus-
tomer-provided tests passed in the submitted assignments (SD=35%), and that
number increases to 90% if we only consider the 10 teams who actually made at-
tempts to implement the required FIT tests (SD=24%)11 (Fig. 6). Informal student
feedback about the practicality of FIT acceptance tests to define functional require-
ments also supports our first and second hypotheses. Students generally commented
that the FIT tests were an acceptable form of assignment specification12. Teams had
between 1 and 1.5 weeks to master FIT in addition to implementing the necessary
functionality (depending on if they were from SAIT or the University of Calgary).

 University of Calgary SAIT

Team 1 2 3 4 5 6 1 2 4 5 6

Customer
Tests

Pass Ratio
100% 100% 0% 100% 100% 100% 79% 26% 100% 100% 100%

Fig. 6. Customer test statistics by teams

9 http://mase.cpsc.ucalgary.ca/apse504/W2004/
10 SAIT teams had fewer members so that we would have an equal number of teams at each lo-

cation.
11 One team’s data was removed from analysis because of a lack of participation from team

members. One other team (included) delivered code but did not provide FIT fixtures.
12 It should be noted that an academic assignment is not the same as a real-world requirements

specification.

Seventy-three percent (73%) of all groups managed to satisfy 100% of customer
requirements. Although this refutes our second hypothesis, our overall statistics are
nonetheless encouraging. Those teams who did not manage to satisfy all acceptance
tests also fell well below the average (46%) for the number of requirements attempted
in their delivered product (Fig. 7).

 University of Calgary SAIT

Team 1 2 3 4 5 6 1 2 4 5 6

% of
Require-

ments
Attempted

87% 55% 42% 77% 42% 68% 32% 10% 59% 32% 35%

Fig. 7. Percentage of attempted requirements. An attempt is any code delivered that we evalu-
ate as contributing to the implementation of desired functionality

Unfortunately, no teams were able to implement and test at least 50% of the addi-
tional requirements we had expected. Those requirements defined loosely in prose but
given no initial FIT tests were largely neglected both in terms of implementation and
test coverage (Fig. 8). This disproves our hypothesis that 100% of implemented re-
quirements would have corresponding FIT tests. Although many teams implemented
requirements for which we had provided no customer acceptance tests, on average
only 13% of those new features were tested (SD=13%). Those teams who did deliver
larger test suites (for example, team 2 returned 403% more tests than we provided)
mostly opted to expand existing tests rather than creatively testing their new features.

Te
am

N
um

be
r N

ew

 T
es

ts

N
ew

 T
es

t
 P

as
s

R
at

io

N
um

be
r N

ew

 A
ss

er
tio

ns

N
ew

 A
ss

er
tio

ns

 P
as

s
R

at
io

%
 A

dd
iti

on
al

Te

st
s

%
 A

dd
iti

on
al

A

ss
er

tio
ns

%
 N

ew
 F

ea
tu

re
s

 T
es

te
d

%
 A

tte
m

pt
ed

 F
ea

tu
re

s
Te

st
ed

1 19 100% 208 100% 49% 32% 32% 67%

2 157 100% 5225 100% 403% 795% 26% 100%

3 0 0% 0 0% 0% 0% 0% 0%

4 116 100% 2218 100% 297% 338% 32% 75%

5 9 100% 99 100% 23% 15% 16% 100%

6 41 93% 616 95% 105% 94% 37% 100%

U
ni

ve
rs

ity

1 0 0% 0 0% 0% 0% 0% 80%

2 0 0% 0 0% 0% 0% 0% 100%

4 56 100% 1085 100% 144% 165% 11% 66%

5 0 0% 0 0% 0% 0% 0% 100%

6 5 100% 64 100% 13% 10% 5% 100%

SA
IT

Fig. 8. Additional features and tests statistics

Customers do not always consider exceptional cases when designing acceptance
tests, and therefore acceptance tests must be evaluated for completeness. Even in our
own scenario, all tests specified were positive tests; tests confirmed what the system
should do with valid input, but did not explore what the system should do with invalid
entries. For example, one test specified in our suite verified the results of a search by
file type (.doc, .pdf, etc.). This test was written using lowercase file types, and no-
where was it explicitly indicated that uppercase or capitalized types be permitted
(.DOC, .Pdf, etc). As a result, 100% of teams wrote code that was case sensitive, and
100% of tests failed when given uppercase input.

6 Conclusions

Our hypotheses (A and B) that FIT tests describing customer requirements can be eas-
ily understood and implemented by a developer with little background on this frame-
work were substantiated by the evidence gathered in this experiment. Considering the
short period of time allotted, we can conclude from the high rate of teams who deliv-
ered FIT tests (90%) that the learning curve for reading and implementing FIT tests is
not prohibitively steep, even for relatively inexperienced developers.

Conversely, our hypotheses that 100% of participants would create code that
passed 100% of customer provided tests (C), that more than 50% of the requirements
for which no tests were given would be tested (D), and that 100% of implemented re-
quirements would have corresponding FIT tests (E) were not supported. In our opin-
ion, the fact that more SAIT teams failed to deliver 100% of customer tests can be at-
tributed to the slightly shorter time frame and the lack of practical guidance from
TA’s. Given more time and advice we believe that a higher rate of customer satisfac-
tion can be achieved. The lack of tests for new features added by teams may, in our
opinion, be accredited to the time limitations placed on students, the lack of motiva-
tion to deliver additional tests, and the lower emphasis given to testing in the past
academic experiences of these students13. At the very least, our observation that fea-
ture areas with fewer provided FIT tests were more likely to be incomplete supports
the idea that FIT format functional requirements are of some benefit.

The fact that a well defined test suite was provided by the customer up front may
have instilled a false sense of security in terms of test coverage. The moment the pro-
vided test suite passed, it is possible that students assumed the assignment was com-
plete. This may be extrapolated to industry projects: development teams could be
prone to assuming their code is well tested if it passes all customer tests. It should be
noted that writing FIT tests is simplified but not simple; to write a comprehensive
suite of tests, some knowledge and experience in both testing and software engineer-
ing is desirable (for example, a QA engineer could work closely with the customer). It
is vital that supplementary testing be performed, both through unit testing and addi-
tional acceptance testing. The role of quality assurance specialists will be significant
even on teams with strong customer and developer testing participation. Often dia-

13 Despite the fact that the importance of testing was repeatedly emphasized, students are not

accustomed to writing test code. Students were aware that the majority of marks were not be-
ing assigned based on new tests.

bolical thinking and knowledge of specific testing techniques such as equivalence par-
titioning and boundary value analysis are required to design a comprehensive test
suite.

From the outcome of our five hypotheses, along with our own observations and
feedback from the subjects, we can suggest how FIT acceptance tests perform as a
specification of functional requirements in relation to the criteria stated in our intro-
duction. We believe that noise is greatly reduced when using FIT tests to represent re-
quirements. Irrelevant information is more difficult to include in well structured tables
than in prose documents. Also, tests which shade or contradict previous tests are eas-
ily uncovered at the time of execution (although there is no automatic process to do
so). Acceptance tests can be used as regression tests after they have passed in order to
prevent problems associated with possible noise. We discovered that silence is not
well addressed by the FIT framework, and may even become a more serious problem.
This was well demonstrated by the failure of our teams to test at least 50% of the re-
quirements for which no tests were given. Our example of case-sensitive document
types also clearly demonstrates how a lack of explicit tests can lead to assumptions
and a lack of clarifications. Prose documents may be obviously vague, and by this ob-
viousness incite additional communication. Over-specification is not a problem since
FIT tests do not allow any room for embedded solutions in the tests themselves. FIT
tables are only representations of customer expectations, and the fixtures become the
agents of the solutions. Although it can be argued that specifying an ActionFixture
describes a sequence of actions (and therefore a solution), when writing FIT tables
these actions should be based on business operations and not code-level events. Wish-
ful thinking is largely eliminated by FIT, since defining tests requires that the cus-
tomer think about the problem and make very specific decisions about expectations.

N
oi

se

Si
le

nc
e

O
ve

r-
sp

ec
ifi

ca
tio

n

W
is

hf
ul

 T
hi

nk
in

g

A
m

bi
gu

ity

Fo
rw

ar
d

R
ef

er
en

ce
s

O
ve

rs
iz

ed
 D

oc
um

en
ts

R
ea

de
r S

ub
je

ct
iv

ity

C
us

to
m

er
 U

nc
er

ta
in

ty

M
ul

tip
le

 R
ep

re
se

nt
at

io
ns

U
se

 o
f T

oo
ls

U
se

r I
nv

ol
ve

m
en

t

FIT Effectively
Addresses

Fig. 9. Evaluation of FIT for requirements specification. Check marks indicate that FIT effec-
tively addresses the issue (although it could be only partial)

Ambiguity may still be a problem when defining requirements using FIT tests if
keywords or fields are defined in multiple places or if these identifiers are open to
multiple interpretations. However, FIT diminishes ambiguity simply because it uses
fewer words to define each requirement. Forward references and oversized docu-
ments may still be an issue if large numbers of tests are present and not organized into
meaningful test suites. In our experiment, the majority of groups categorized their
own tests without any instruction to do so. Reader subjectivity is greatly reduced by
FIT tests. Tables are specified using a format defined by the framework (ActionFix-

ture, ColumFixture, etc). As long as tests return their expected results when executed,
the developer or customer knows that the corresponding requirement was correctly in-
terpreted regardless of the terminology used. Customer uncertainty may manifest as
the previously mentioned problem of silence, but it is impossible for a defined FIT
test not to have a certain outcome. FIT tests are executable, verifiable and easily read-
able by the customer and developer, and therefore there is no need for multiple repre-
sentations of requirements. All necessary representations have effectively merged into
a suite of tables. Requirements gathering tools can be problematic when they limit the
types of requirements that can be captured. FIT is no exception; it can be difficult to
write some requirements as FIT tests, and it is often necessary to extend the existing
set of fixtures, or to utilize prose for defining non-functional requirements and making
clarifications. However, FIT tests can be embedded in prose documents or defined
through a collaborative wiki such as FitNesse, and this may help overcome the limita-
tions of FIT tables.

In addressing the characteristics of suitability (as defined in Introduction), our find-
ings demonstrate that FIT tests as functional requirements specifications are in fact
unambiguous, verifiable, and usable (from the developer’s perspective). However, in-
sufficient evidence was gathered to infer consistency between FIT tests.

Although our results did not match all of our expectations, valuable lessons were
learned from the data gathered. When requirements are specified as tests, there is still
no guarantee that the requirements will be completed on-time and on-budget. Time
constraints, unexpected problems, lack of motivation and poor planning can still result
in only some requirements being delivered. As with any type of requirements elicita-
tion, it is vital that the customer is closely involved in the process. FIT tests can be
executed by the customer or in front of the customer, and customers can quickly
evaluate project progress based on a green (pass) or red (fail) condition. In conclu-
sion, our study provides only initial evidence of the suitability of FIT tests for specify-
ing functional requirements. This evidence directly supports the understandability of
this type of functional requirements specification by developers. There are both ad-
vantages and disadvantages to adopting FIT for this purpose, and the best solution is
probably some combination of both prose-based and FIT-based specifications.

7 Validity

This paper provides only initial evidence supporting the use of FIT tests to communi-
cate functional requirements to developers. There are several possible threats to the
validity of this experiment that should be reduced through future experiments. One
such threat is the limitation of our experiment to a purely academic environment. Al-
though we spanned two different academic institutions, industry participants would be
more relevant. Another threat is our small sample size, which can be increased
through repeated experiments in future semesters. Moreover, all of the FIT tests pro-
vided in this experiment were written by expert researchers, which would not be the
case in an industrial setting. Although this was an academic assignment, it was not
conducted in a controlled environment. Students worked in teams on their own time
without proper invigilation.

8 Future work

This experiment is the first in a series of six FIT-related experiments planned for the
next eight months. Given more time and advice, we believe, that a higher rate of cus-
tomer satisfaction can be achieved. This will be investigated using the same teams as
the experiment continues this semester. All insights gained from the analysis of our
observations will be verified and validated with additional trials on the current teams
as well as new trials with a new sampling of subjects.

An upcoming experiment will have the subjects refactor current tests to adapt to
new and changing requirements. In addition, there will be increased emphasis on
more complete, negative testing. In a third experiment, subjects will be asked to spec-
ify a suite of FIT requirements for a remote team at a different institution.

An experiment with industry practitioners is part of our ongoing research. It will
test the understandability of functional requirements specified as FIT tables. We in-
vite any interested party to contact the authors for further discussion. FIT training, on-
site or off-site, will be provided free of charge.

Acknowledgements

We would like to thank all participants from the University of Calgary and SAIT who
participated in this study and provided us with their valuable feedback. This ongoing
research is partially sponsored by NSERC and iCore.

References

1. Ben-Menachem, M., Marliss, G. Software Quality: Producing Practical, Consistent Soft-
ware, International Thomson Publishing, London, UK, 1997.

2. CenterLine Software, Inc. A Survey of 240 Fortune 1,000 companies in North America and
Europe, Cambridge, MA, 1996. Online
http://www.computerworld.com/news/1997/story/0,11280,17522,00.html. Last accessed
February 29, 2004.

3. Davis, A. Software Requirements Revision Objects, Functions, & States, Prentice Hall PTR,
Englewood Cliffs, NJ, 1994.

4. Hooks, I., Farry, K. Customer-Centered Products: Creating Successful Products Through
Smart Requirements Management. American Management Association, New York, NY,
2001.

5. Jones, C. Patterns of Software Systems Failure and Success. International Thompson Com-
puter Press, Boston, MA, 1996.

6. Meyer, B. On Formalism in Specifications. IEEE Software, 2(1):6–26, 1985.
7. The CHAOS Chronicles. The Standish Group International, West Yarmouth, MA. Online

http://www1.standishgroup.com//chaos/intro2.php. Last accessed January 20, 2004.
8. Van Vliet, H. Software Engineering: Principles and Practice, 2/e, John Wiley & Sons,

Chichester, UK, 2000.
9. Young, R. Effective Requirements Practices, Addison-Wesley, Boston, MA, 2001.

