
The Practice of Specifying Requirements Using
Executable Acceptance Tests in Computer Science

Courses

Grigori Melnik
University of Calgary/SAIT Polytechnic

2500 University Drive NW
Calgary, Alberta, T2N 1N4, Canada

+1-403-210-9710

melnik@cpsc.ucalgary.ca

Frank Maurer
University of Calgary

2500 University Drive NW
Calgary, Alberta, T2N 1N4, Canada

+1-403-220-3531

maurer@cpsc.ucalgary.ca

ABSTRACT

This report describes the practice of using executable acceptance
testing for specifying programming assignments in software
engineering courses. We summarize experiences from two
courses introduced in two academic institutions over four
semesters – both from students’ and instructors’ perspectives.
Examples of projects and the discussion of the assignment flows
are given. The paper highlights testing as an all-encompassing
activity in software development projects. It also contains
recommendations for academics thinking of incorporating
executable acceptance testing into their courses.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications;
D.2.5 [Software Engineering]: Testing

General Terms
Design, Verification

Keywords
Executable acceptance testing, FIT, requirements specification,
academic projects

1. INTRODUCTION
Acceptance test is a (formal) test conducted to determine whether
or not a system satisfies its acceptance criteria and to enable the
user (customer) to determine whether or not to accept the system
(as defined in [1] and [9]). Acceptance testing must proceed from
the user’s perspective (not the developer’s). Acceptance tests can
be specified in many ways from prose-based user stories to formal
languages and scripts. These tests can be executed manually or
automatically. Similarly, programming assignments in software
engineering courses specify the requirements from the instructor’s
perspective. Traditionally, they are written in prose. This paper
reports on our experiences of using executable acceptance tests
for specifying assignments. This approach highlights the role of
testing beyond a traditionally limited purpose of detecting
failures.

Copyright is held by the author/owner(s).
OOPSLA’05, October 16–20, 2005, San Diego, California, USA.
ACM 1-59593-193-7/05/0010.

Testing becomes a more encompassing activity focusing on
design and customer interaction. Students start to think of testing
early in the project (as opposed to the traditional activity that is
done at the end of the project and only if time permits).We share
lessons learnt and encourage educators to consider using this
technique in their courses, as early as even in the first semester
courses. Specifically, we discuss the use of the FIT acceptance
testing framework for communicating and testing project
requirements in two software engineering courses.

2. FIT FRAMEWORK AND FITNESSE
FIT is an open-source, multi-lingual framework for acceptance
testing [5]. It allows specifying acceptance tests in the form of
tables. FIT tables can be written in various common formats –
Word, Excel, HTML, Wiki1. There are several test table styles
(Table 1). To be interpreted (executed), these tables require
“fixtures”, which are built by developers (in any language that
FIT execution engine supports). The fixtures are normally written
as dispatchers of calls to the business logic of the real system. The
end result is an “executable specification” [12].

Fitnesse [6] combines the ideas of FIT (easy edit and execution of
acceptance tests) and Wiki (open collaborative space) and allows
teams to collaboratively specify test tables and run them through a

Table 1. Common FIT fixtures

Fixture Type Description

RowFixture Examines an order-independent set of values
from a query.

ColumnFixture Represents inputs and outputs in a series of
rows and columns.

ActionFixture Emulates a series of actions or events in a
state-specific machine and checks to ensure
the desired state is reached.

CommandLineFixture Executes shell commands in multiple threads

TableFixture Base fixture type allowing users to create
custom table formats.

1 Essentially, any document format that supports tables and can be

converted into HTML.

Specification

1. Design a data model (as a DTD or an XML Schema, or, likely, a set of DTDs/XML Schemas) for the artifacts to be used by
the DocumentReviewSystem. Concentrate on "Document submission/update" and "Document review" tasks for now.

2. Build XSLT sheet(s) that when applied to an instance of so's repository will produce a subset of so's. As a minimum, queries
and three query modes specified in DrsAssignmentOneAcceptanceTests must be supported by your model and XSLT sheets.

3. Create additional FIT tests to completely cover functionality of the queries.

Setup files
 drs_master.xml - a sample repository against which the FIT tests were written

 DrsAssignmentOneAcceptanceTests.zip - FIT tests, unzip them into FITNESSE_HOME\FitNesseRoot\ directory.

Figure 1. Assignment one specification in Web-based systems course.

Wiki page. Anyone can contribute content to the site without
knowledge of HTML or programming technologies.

Ideally, any automated tests should fit into the existing build
process. FIT is a command-line tool and Fitnesse can also be run
in the command line mode. It allows them both to be included in
the build scripts (such as Ant).

3. COURSE AND STUDENT PROFILES
We used executable acceptance testing for specifying assignments
in junior and senior courses in two academic institutions over four
semesters (Fall 2003 – Winter 2005). Course descriptions and
student profiles are provided below.

3.1 Software Testing and Maintenance
Software Testing and Maintenance course is offered in the first
semester2 of Bachelor of Applied Information Systems3 program
at SAIT Polytechnic. This is a required course for students in
Software Engineering and Information Systems Development
majors. A variety of techniques and tools are introduced including
unit testing, integration testing, GUI testing, user acceptance
testing, performance testing, mock objects, automated build tools,
and continuous integration. Students are responsible for both
specifying the test cases and implementing those using testing
frameworks with the primary goal of building a quality product.
Students in this program generally belong to one of two groups:
1) full-time learners who entered the program immediately after
finishing their college two-year diploma program with a solid
knowledge of programming languages, design, and development
techniques; 2) part-time adult learners normally employed in the
field and taking the program to upgrade their knowledge and to
obtain a degree. They work on the project assignments in teams
(normally teams of 4) and this mix of less-experienced with more-
experienced students creates a vibrant team environment.

This course was originally offered in the second semester of the
program, but was moved to the first one. This change has
positively affected the level of preparation for the project courses
in the following semesters because students are already familiar
with common testing techniques, automatic build tools, version
control, and collaboration systems. As a result, students are

2 In essence, it is the fifth semester, as the students are required to

have graduated from a computer technology diploma program
(additional two years of prior study).

3 Similar to a BTech degree.

expected to provide test drivers for all future code they write. The
doctrine of merciless testing had been “engraved” in students’
minds.

3.2 Senior Web-Based Systems Course
Web-Based Systems is a senior course taught by one of the authors
at the University of Calgary (majority in Computer Science major
and about 25% in Electrical Engineering, Environment Design,
Economics, and other majors) and at SAIT Polytechnic (Software
Engineering and Information Systems Development majors). The
course gives an overview on a broad range of methods and
techniques for building Web-based systems, including XML,
XSL, J2EE, and Web services4.
The course includes comprehensive hands-on software
development assignments done in teams of 4-6 students.
Assignments utilizing the J2EE framework are designed to deepen
the understanding of the introduced technologies and design
patterns. Students are encouraged to follow agile principles. Code
reuse is strongly emphasized. The final exam consists of
developing a small Web-based system and is done online – the
students have access to all their learning resources and projects
and must deliver clean code that works.

4. COURSE CONTEXTS

4.1 Web-Based Systems Development
In the Winter 2004, the senior Web-Based Systems course project
required students to build an online document review system. For
the first assignment5

, students were required to work on only a
partial implementation concentrating on the submission and
review tasks. The only information provided in terms of project
requirements was:

1. An outline of the system no more detailed than that given
above.

2. A subset of functional requirements to be implemented
(Figure 1).

3. A suite of FIT tests.
Requirements in the FIT test suite can be described generally as
sorting and filtering tasks for a sample XML repository. Our

4 More information, including course description, outline and

assignments available at http://mase.cpsc.ucalgary.ca/seng513
5http://mase.cpsc.ucalgary.ca/EB/Wiki.jsp?page=Root.SENG513

w04AssignmentOne

provided suite initially consisted of 39 test cases and 657
assertions. In addition to developing the code necessary to pass
these acceptance tests, participants were required to extend the
existing suite to cover any additional sorting or filtering features
associated with their model. An example FIT Test finding a
document by author, with results sorted by date submitted is
shown in Figure 2.

Participants were given two weeks (unsupervised) to implement
these features using XML, XSLT, Java and the Java API for XML
Processing (JAXP). A common online experience base was set up
and all students could utilize and contribute to this knowledge
repository. An iteration planning tool and source code
management system were available to all teams if desired.

The learning objectives for the first assignment were to master
XML Schema for document modeling and practice XML
processing (with XSLT and JAXP). Teams had between 1 and 1.5
weeks to master FIT in addition to implementing the necessary
functionality (depending on if they were from SAIT Polytechnic
or the University of Calgary). All student teams were able to
interpret and understand FIT tests. Median passing rate of
instructor-provided test cases was 90% in the submitted
assignments. It is important to note that FIT was introduced to
students for the first time. This suggests that the FIT learning
curve is not very steep.

FIT acceptance tests were used again later in the course in another
assignment, in which teams had to Web-service-enable selected
system functionality. In the second part of this assignment, teams
from UofC and SAIT Polytechnic randomly exchanged their
acceptance suites and had to code against those.

4.2 Software Testing and Maintenance
The Software Testing and Maintenance course at SAIT
Polytechnic is designed to introduce testing practices around a
development project. We emphasized the synergy of testing and
development activities. For this course, we typically pick some
known game for a project. In Fall 2004, we used the game of

Rocket Mania [10]. In this game, the player is required to rotate
fuses on the game board to connect them into complete paths that
will launch rockets. The strategy is to launch as many rockets at a
time as possible resulting into additional bonuses In order to go
on to the next level, a certain number of rockets (which increases
with each level) must be launched in a given period of time. The
game ends when the player fails to launch a required number of
new rockets.
Course assignments follow a progressive approach (see Table 2).
The teams were given an initial suite of acceptance tests specified
by the instructor. They were responsible for implementing all
necessary fixtures to get all tests passed. Teams were also
required to specify test cases for the 6 tests listed in the suite but
not specified by the instructor and getting those to pass as well.
In addition, students were encouraged to specify any additional
tests they would deem to be useful for two remaining categories:
Traversing with the Rockets Upgraded and Adding Bonus
Elements. Figure 3 shows the suite of acceptance tests and Figure
5 shows a sample test case for traversing the board with a single
path formed, removed and new fuses appeared. Notice in this
case, several fixtures are used and students implemented
interactions between fixtures. Teams had two and a half weeks to
master FIT and to complete the assignment.

5. LESSONS LEARNT
Our experiences with utilizing executable acceptance testing in
courses of various levels and in different application domains,
clearly manifest an opportunity for executable acceptance testing
to be used in a Computer Science course of any context. It does
not affect the pace of the course or the amount of the material
covered. A two-hour lecture and a demonstration are sufficient to
get students ready. Alternatively, it can be introduced by teaching
assistants in a single lab or tutorial session.

Moreover, FIT, in our opinion, can be incorporated in any class
regardless of the development methodology. In both courses,
students commented that concentrating more on tests (including

Figure 2. Sample FIT test from the DrsAcceptanceTests Suite after execution.

acceptance tests) contributed positively to their learning: learning
of the topic and learning about assigned projects.

When incorporating acceptance testing in their assignments and
projects, the following are three possible strategies for instructors,
that we have tried in our courses with variable degree of success.

Strategy 1: Instructor provides a complete acceptance test suite
and uses it as the main assignment specification. Students are
required to implement logic and test fixtures to make the suite
pass. From the perspective of software engineering, a possible
downside of this is that though a formal specification (in the form
of acceptance tests) is very precise and makes it easier for
students to implement the assignment, it may actually be of
disservice to them. One may suggest that students are put into the
clean, precise, comforting world of the test suite, prepared by the
instructor, instead of facing the tricky software engineering
problems (such as analysis and articulation of requirements in the
precise form) and building their own test suite. This would not be
a problem unless the analysis is one of the learning objectives of
the course. If the goal is to train students in some technology,
framework or development patterns, then Strategy 1 is
appropriate. Strategies 2 and 3 address this possible shortcoming.

Strategy 2: Instructor specifies an incomplete acceptance test
suite and requires students to extend it. This way they learn by
example and also have to analyze the problem in order to write
their own test cases. Also, this strategy is closer to the real world
as it highlights a notorious problem in the industry when the test
suites are often incomplete.

Strategy 3: Instructor assigns the task of writing acceptance tests
to teams themselves and then exchanges the suites between teams.
Students are responsible for analyzing the problem and specifying
the test cases, for interpreting the test cases obtained from another
team and implementing required functionality to pass the tests.
This is trickier to implement due to the logistics of the exercise
but not impossible. In our experience, this approach was less

successful. Possible explanations for this are: 1) at the end of the
semester, less time could be devoted to the assignments and 2)
little or no face-to-face communication occurred between the
customer (in this case the team that wrote the FIT tests) and the
development team (that had to implement them). In a survey
distributed at the end of the Web-Based Systems course, several
students commented on the quality of the acceptance test suite
they have received: “[The other team] made it (FIT) too close to
their model. Our tests were more generic.” and “The other
acceptance tests were a mess. Misspellings, errors.” Nevertheless,
twelve out of 21 students who responded to the question of
whether the acceptance tests given to you by the other team were
sufficient to create the Web service, replied positively, with two
students even indicating that “it was very easy”.

Additional observations and lessons learnt include:

 Several students in the junior course on software testing and
maintenance initially objected to the practice of doing both –
writing test cases and implementing code. They believed a
testing course should be purely about testing tools and
testing techniques. They remained skeptical during the first
couple of iterations (assignments), but soon recognized the
value of doing both testing and development. Students have
realized that testing is much more than just verification and
validation. Based on the informal feedback at the end of the
course, they have started to appreciate testing as a way of
specifying course requirements and guiding their systems
design.

 Overall, based on a survey, majority of students suggested
that FIT adequately describes the requirements (78%). When
asked “would you have preferred to have this assignment
specified entirely as prose (text) instead of as FIT acceptance
tests?”, 80% of students answered “no”. This indicates a
clear preference for using executable acceptance tests over
pure prose for requirements specifications.

Table 2. Course assignment descriptions and new techniques allocations

Assignment Brief description New techniques
introduced and practiced Frameworks/tools used

 - Randomizer to arrange game fuses on the board.
- FilteredRandomizer that reduces the likelihood of certain fuse by a

certain percentage. This is used in the logic engine of the game,
when we the difficulty level increases and certain pieces should
appear less frequently than others.

- Equivalence partitioning,
- Boundary-value Analysis,
- Unit testing

- JUnit

 - BoardTraverser engine,
- Single board traversals,
- No rotations,
- No fuse replacements,
- No bonuses

- Test-first design (TDD),
- More unit testing,
- Refactoring

- JUnit

 - Using BoardTraverser engine from the A2, build the logic
component for removing (burning) the complete paths and replacing
them with new pieces,

- Score calculator,
- Rotations,
- No bonuses

- Executable acceptance
testing

- FIT/ Fitnesse

 - GUI version of the game,
- No animation

- Data-driven GUI testing - Jemmy

 - Networked version of the game (for 2 players),
- Players take turns.

- Mock objects
- Automated build scripts

- EasyMock
- Ant

Figure 3. Fragment of the FIT Test Suite for Rocket Mania game in Software Testing and Maintenance course.

 The simplicity of the FIT framework and Fitnesse engine
allows for a quick and easy setup. We have used it equally
well on local workstations or a centralized server. Test case
porting is as easy as copying a subdirectory with all test
cases into the FitNesseRoot directory and creating a link to it
from one of the existing pages. Submissions can be
organized via cvs or simply by asking students to zip all
subdirectories of the test suite and add the file to the source
code submission. Automating build process is helpful and
the execution of FIT acceptance tests can be coded as one of
the tasks.

 The support for the framework and the tool is growing.
Recently, Mugridge has released the FitLibrary [8] with
several new fixtures and useful extensions. It includes
DoFixture, an alternative, compact fixture to writing
workflow tests which are more understandable. There are
also implementations of FIT for C#, C++. Delphi, Perl, Ruby
and Python. Undoubtedly, more languages will be supported
as popularity of the framework grows.

 In our courses, one of the rules of engagement is that only
the code that passes full regression testing can be checked
into the repository. Most students began to appreciate this
practice as they were able to confidently rely on clean code
in the repository.

 Iterative development and “clean code that works” required
students to fix all bugs and code “smells” identified by the
instructor or TAs in the previous iteration.

 Testing was made an all-encompassing activity that simply
could not be ignored. Test drivers that accompany the project
code account for at least 30% of the grade. Even though
some students failed to see the value of tests at the
beginning, they have later admitted that they were “glad they
had them as the project progressed”. We introduced and
encouraged acceptance-test-driven development (test-first
design). However, there is no way to control and to enforce
it. Not everyone embraced the test-driven approach.

Regardless whether students practice test-first or test-last,
having a grade component for tests and all-tests-pass-before-
check-in policy strengthens the testing culture in the teams.
Though one may suggest that this culture will not last
without additional reinforcement, the evidence from the
graduates currently working in the field indicates preference
of many to follow the practice of testing early and often.

 In the process of designing acceptance tests for the board
traversal algorithm of the Rocket mania game, we have seen
an interesting byproduct that we have not foreseen. There
was a discussion among students and the instructor about the
way the game board and actions should be represented in the
FIT table. Originally, it was proposed to represent each fuse
by 4 bits, representing available connections on four sides of
the fuse (North, East, South, West). Doing so would have
complicated the way of specifying the tests by the customer.
We adopted the use of box-drawing characters (Unicode
2500- 253C). This way, the process of writing the tests for
complete fuses became visual and easy to follow (see
Figure 4). Essentially, a new, domain-specific notation was
produced as a result of this exercise.

 In the Web-based Systems project, students were utilizing
several fixtures (in the example depicted by Figure 4,
TableFixture and ActionFixture were used) and they had to
research and implement mechanisms for passing data
between the fixtures. Most teams accomplished the task
skillfully.

 Many students considered the FIT suite summary as their
progress dashboard. Since Fitnesse and the tests were hosted
of a centralized server, anyone (including the instructor)
could see the progress made at any time.

 This may have also produced a deceptive sense of security –
“if the suite passes, my code is good”. It is important to
remind students to think outside of the box and explore
beyond the provided test suite.

RocketManiaAssignmentThreeAcceptanceTests.
TraverseBoardSinglePathRemoved

Figure 4. Sample FIT test case with test results from the
Rocket Mania acceptance suite.

 We have observed the FIT fixture code produced by students
was generally “fat” and contained all required functionality.
UofC teams produced fatter fixtures than SAIT teams. This
can be explained by the fact that there was little external
motivation for the UofC students to refactor their code. Even
in the last assignment, when students knew about the test
suite exchange, most teams ended up with fat fixtures. This
is understandable since no explicit requirement to refactor
fixtures was given and there was no strong reason for
students to move their logic to another location (outside of
FIT code). Conversely, at SAIT students had already
implemented business logic in two previous iterations, and
were applying FIT to existing code as it was under
development, thus producing a more reusable, loosely-
coupled code.

 Since executable acceptance tests as requirements are less
prone to the sins of traditional requirements: ambiguity,
noise, multiple representations, and uncertainty, we have
experienced fewer student inquiries of the clarification
nature.

 Test-Driven Development/Test-first design practice has
drawn significant attention in recent years with the
development of agile methods [2], [3]. Engaging in it leads
to designs that are well factored and more amenable to
testing. Introducing Acceptance-Test-Driven-Development
in computer science courses makes students think about their
designs from a testability perspective. When writing
executable acceptance tests, students also learn how express
requirements in a precise, unequivocal manner. This is an
important skill for software developers.

 Most importantly, utilizing executable acceptance testing for
course assignment specification forces student to think about
testing and to practice testing early.

6. SUMMARY
We have described the practice of specifying requirements using
executable acceptance testing in academic settings. Based on our
experiences of using it for the last four semesters, we find the
practice straightforward to implement regardless of the course
context. It introduces testing early and makes it an all-
encompassing activity. A merciless testing mantra (inspired by
both acceptance and unit testing) cultivates the discipline and
accountability among software engineering students. This,
hopefully, will bring fruitful results as the future graduates may
reduce the horrendous failure rate of software projects in the
industry [4]. We encourage more software engineering educators
to try it out.

7. REFERENCES
[1] Acceptance Test. Online, last retrieved Mar 17, 2005:

http://c2.com/cgi/wiki?AcceptanceTest
[2] Astels, D. Test-Driven Development: A Practical Guide.

Prentice Hall, 2003.
[3] Beck, K. Test Driven Development: By Example. Addison-

Wesley, 2003.
[4] Chaos Report. The Standish Group, West Yarmouth, MA,

1995, 1997, 1999, 2001, 2003.
[5] Cunningham, W. Fit: Framework for Integrated Test. Online,

last retrieved Mar 17, 2005: http://fit.c2.com/
[6] Fitnesse. Online, last retrieved Mar 17, 2005:

http://fitnesse.org
[7] Maximillien, M. and Williams, L., “Assessing Test-Driven

Development at IBM”, International Conference on Software
Engineering, May 2003.

[8] Mugridge, R. The Fit Library. Online, last retrieved June 25,
2005: http://fitlibrary.sourceforge.net

[9] Perry, W. Effective Methods for Software Testing, 2/e, John
Wiley & Sons: New York, NY, 2000.

[10] RocketMania. Online, last retrieved Jan 25, 2005:
http://games.yahoo.com/games/downloads/rm.html

[11] Shepart, T. et al. “More Testing Should Be Taught”.
Communications of the ACM, Vol. 44, pp.103-108, 2001.

[12] Shore, J. Introduction to Fit. Online, last retrieved Jul 14,
2005: http://fit.c2.com/wiki.cgi?IntroductionToFit

